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Abstract

This paper reports an analytical and numerical study of double!di}usive natural convection through a ~uid!saturated\
vertical and homogeneous porous annulus subjected to uniform ~uxes of heat and mass from the side[ The in~uence of
each leading parameter and especially curvature\ a major parameter of this geometry\ has been numerically investigated[
Solutions are presented for 0¾ A ¾ 09\ 0¾ RaT ¾ 199\ 0¾ Le ¾ 19\ 9[0 ¾ N ¾ 09 and 9¾ g ¾ 09 where A\ RaT\ Le\
N and g denote the aspect ratio\ thermal Rayleigh number\ Lewis number\ buoyancy ratio and curvature parameter\
respectively[ For the steady state\ an analytical solution valid for strati_ed ~ow in slender enclosures is presented[ A
good agreement is observed between the analytical predictions and the numerical simulation for su.ciently high aspect
ratios[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

A aspect ratio � H:e
C concentration
cp speci_c heat at constant pressure
D mass di}usivity
1e enclosure width � ro−ri

1H enclosure height
j? lateral mass ~uxes
Le Lewis number
N buoyancy ratio
Nu average Nusselt number
P pressure
q? lateral heat ~uxes
r\ z cylindrical polar coordinates
RaT thermal Rayleigh number
Sh average Sherwood number
T temperature
U\ W _ltration velocity components[

Greek symbols
a thermal di}usivity
bT thermal expansion coe.cient

� Corresponding author[ E!mail] marcouxÝlm1f[ups!tlse[fr

bC concentration expansion coe.cient
g curvature parameter � e:ri

o porosity of the porous medium
k characteristical permeability
l thermal conductivity
m dynamic viscosity
n kinematic viscosity � m:r9

r density
s heat capacity ratio[

Subscripts
i inner cylinder
o outer cylinder[

0[ Introduction

The phenomenon of natural convection through
porous media has been studied extensively in the past
"Combarnous and Bories ð0Ł# and the recent book of
Nield and Bejan ð1Ł summarizes the state of the art[
However\ in ~uid mixtures saturating the porous media\
where the variation of ~uid density is induced by both
temperature and solute "the so!called double!di}usive
~ow#\ the dynamics of heat and mass transfer can be very
di}erent from those driven by the temperature _eld alone[
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A major part of the fundamental research on double
di}usive convection has been reviewed by Trevisan and
Bejan ð2Ł[

Interest in this phenomenon\ driven by the combined
buoyancy e}ect due to temperature and concentration
variations through the porous medium\ has lately been
motivated by the involvement of the process in such
diverse problems as contaminant transport in saturated
soils\ the underground disposal of nuclear waste and the
migration of moisture in _brous insulation[

Studies in double!di}usion in porous media primarily
focus on the problem of convective instability in a hori!
zontal layer[ Many authors have investigated this prob!
lem theoretically\ experimentally and numerically^ an
overview of these earlier works is also in ð1Ł and ð2Ł[
However\ because the most basic geometry for the study
of simultaneous heat and mass transfer from the side is
the vertical wall\ most of the available studies dealing
with double!di}usive natural convection in con_ned
porous media concern rectangular cavities subjected to
constant gradients of temperature and solute con!
centration at their vertical walls[ For this vertical con!
_guration\ the _rst investigations concerned the stability
of compositional and thermally strati_ed layers "Ger!
shuni et al[ ð3Ł\ Khan and Zebib ð4Ł# and boundary layer
~ow "Bejan and Khair ð5Ł#[ This case allows the devel!
opment of closed!form analytical solutions for engin!
eering heat and mass transfer calculations and the
improvement of the order!of!magnitude estimates pro!
duced by scale analysis[ References ð6Ð04Ł concern the
theoretical and numerical papers published during the
past decade on this subject[ Trevisan and Bejan ð6Ł
developed\ in 0875\ an analytical Oseen!linearized solu!
tion for the boundary layer regime\ valid for the case
Le � 0\ and a similarity solution for the heat!driven ~ow
limit and Le × 0[ They also performed an extensive series
of numerical experiments that validate the analytical
results and provide heat and mass transfer data in the
domain not covered by analysis[ Zhang and Bejan ð7Ł
carried out\ in 0876\ a two!dimensional study of the
spreading rate of an isolated porous medium con!
taminated by the deposition of both thermal and chemi!
cal wastes[ Scale analysis and numerical methods were
used to predict the distinct regimes and respective heat
and mass transfer scales for the two extreme cases of
heat!driven and solute!driven natural convection[ A
closed!form analytical solution was also developed for
the limit of in_nitely shallow layers[ Alavyoon and co!
workers re!examined in 0882 ð8Ł and 0883 ð09Ł the case
considered by Trevisan and Bejan ð6Ł for co!operative
"N × 9# ð8Ł and opposing "N ³ 9# buoyancy forces ð09Ł[
They presented an analytical solution valid for strati_ed
~ow in slender enclosures "A Ł 0# and a scale analysis
that agrees with approximations of the analytical solution
within the heat!driven and solute!driven limits[ Com!
parisons between fully numerical and analytical solutions

are presented for a wide range of parameters\ as well as
a domain in which oscillating convection is obtained ð09Ł[
A numerical study by Lin in 0882 ð00Ł analysed transient
natural convection heat and mass transfer in a square
porous enclosure[ He shows that an increase of the buoy!
ancy ratio N improves heat and mass transfer and causes
the ~ow to approach steady!state condition in a short
time[ In 0884\ Mamou et al[ ð01Ł numerically studied
the case of an inclined slot and developed an analytical
solution for parallel ~ows in the core of the cavity[ They
also showed numerically ð02Ł that in a square enclosure
"A � 0# where the two buoyancy forces counteract each
other "N � −0#\ the problem should have multiple ste!
ady state solutions[ Very recently\ Mamou et al[ ð03Ł and
Marcoux et al[ ð04Ł studied the stability of this particular
con_guration of double!di}usion in a porous vertical
cavity with opposing thermal and solutal buoyant forces[
They investigated\ numerically and analytically\ the onset
of convection and the existence of a critical Rayleigh
value above which convection occurs[

All these studies mainly focused on two!dimensional
rectangular cavities[ Such models do not always
adequately represent the more practical situations in
which the cavity is a porous layer bounded by two vertical
concentric cylinders exposed to uniform ~uxes of heat
and mass[ Flow structure and convective heat transfer\
in a vertical annular porous layer under the condition of
constant heat ~ux or isothermal heating and cooling
along the vertical side walls\ have been analysed earlier
both numerically and experimentally\ but only for natu!
ral convection with a single component[ The works by
Havstad and Burns in 0871 ð05Ł and Hickox and Gartling
in 0873 ð06Ł are both theoretical and consider an iso!
thermally heated annulus whose outer wall is cooled to a
constant temperature\ the top and the bottom walls being
insulated[ By numerical\ perturbation and asymptotic
methods\ they obtained results for a wide range of par!
ameters[ Reda\ in 0874 ð07Ł\ conducted experiments for
a water!glass _lled vertical annulus with the inner wall
heated by applying a constant heat ~ux and reported the
temperature distributions and heat transfer results for
Rayleigh numbers up to 79[ Prasad and co!workers\ dur!
ing the years 0873Ð75\ conducted a series of numerical
ð08\ 19Ł and experimental ð10\ 11Ł studies[ Their numerical
studies indicate e}ects of curvature and Prandtl number
on temperature pro_les and Nusselt numbers\ and exper!
imental data support most of the conclusions derived
from the theoretical studies[ On the basis of a parallel
~ow model\ Nguyen et al[ ð12Ł obtained\ in 0875\ a closed!
form solution for the temperature and the velocity dis!
tributions in the pseudo!conduction as well as boundary
layer ~ow regime[ It has been validated with numerical
solutions[

The purpose of the present report is to make up for
this lack of studies concerning this geometry by analysing
double!di}usive convection in a vertical annular porous
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layer _lled with a two!component mixture and subjected
to heat and mass ~uxes at the vertical boundaries[ In the
_rst part\ the system of equations leading this problem
was solved numerically to obtain a detailed description
of the velocity\ temperature and concentration within
the cavity in order to emphasise the in~uence of the
dimensionless parameters RaT\ Le\ N and curvature on
steady and unsteady convective ~ows[ For the case of
high aspect ratios "A − 4#\ an analytical solution is pro!
posed on the basis of a parallel ~ow model[ The good
agreement of this solution with the numerical results
shows that the analytical model can be faithfully used to
obtain a concise description of the problem for these
cases[

1[ Problem statement

Consider a layer of thickness 1e and height 1H under
normal gravity bounded by two vertical concentric
cylinders _lled with a homogeneous isotropic porous
medium saturated by a two!component incompressible
~uid\ as shown in Fig[ 0[

Both cylinders are exposed to uniform ~uxes of heat
"q?i\ q?o# and mass " j?i\ j?o#\ while the horizontal walls are
regarded as being insulated and impermeable[

It should be noticed that in this kind of con_guration\
there is another parameter in addition to the aspect ratio
A � H:e characterizing the geometry that is g � e:ri\
where 9 ³ g ³ �[ This parameter allows quanti_cation
of the curvature e}ects[ So\ a value of zero of g "in_nitely
wide curvature# implies that the behaviour of the mixture

Fig[ 0[ Geometry of the porous enclosure subjected to uniform
heat and mass ~uxes in the horizontal direction[

matches that of a rectangular geometry\ and\ similarly\
the e}ect of curvature increases with increasing g[

By a porous medium we mean a material consisting of
a solid matrix of physicalÐchemical characteristics
"o\ k\ "rc#s\ ls# saturated by a ~uid\ a two!component mix!
ture in our case\ represented by the parameters
"n\ "rcp#f\ lf\ D#[ The whole porous medium can be treated
as a continuum with the solid and ~uid phases and can
be modelled as a _ctitious isotropic and homogeneous
medium with properties "l�\ "rc#�\ D�# which can be
obtained by composition laws or taking the tortuosity t

of the pore structure into account[
The classical hypotheses used in this study are]

*the Dufour e}ect "heat ~ux produced by concentration
gradient# is ignored[

*the Soret e}ect "mass ~ux produced by temperature
gradient# is ignored[ This assumption is not always
valid for mixture "Marcoux et al[ ð13Ł#[

*the ~uid is assumed to be a Boussinesq ~uid] i[e[ both
the porous matrix and the saturating ~uid are incom!
pressible\ and all thermo!physical properties of the
medium are constant\ except the density of the mixture
which depends linearly on the temperature and the
concentration\ and is given by

r"T\ C# � ro ð0−bT"T−To#−bC"C−Co#Ł[ "0#

The equations governing the conservation of mass\
momentum in the Darcy regime\ energy and solute con!
centration in the porous medium have been reduced to
dimensionless forms by using the following scales] L for
length\ Vo � a:L for velocity\ to � sL1:a for time\
Po � anr9:k for pressure\ dT �"q?i#L:l� for temperature
and dC � j?iL:D� for concentration\ with s �"rc#�:"rcp#f

and a � l�:"rcp#f[
The non!dimensional version of the problem to be

considered reads\ using vectorial notations]

9 = V� 9 "1#

V � −9P¦RaT"T¦NC#ez "2#

1T
1t

¦"V =9#T �91T "3#

o�
1C
1t

¦"V =9#C �
0
Le

91C[ "4#

Then\ the dimensionless parameters governing double!
di}usive natural convection are the Rayleigh number\
RaT\ the normalized porosity\ o�\ the Lewis number\ Le\
and the buoyancy ratio\ N\ de_ned by]

RaT �
bT`k

na
LdT "5#

o� �
o

s
"6#

Le �
a

D�
"7#



M[ Marcoux et al[:Int[ J[ Heat Mass Transfer 31 "0888# 1202Ð12141205

N �
Rac

RaT

�
bcdC
bTdT

[ "8#

They are completed with the aspect ratio A and the cur!
vature parameter g described previously[

For this case of cylindrical geometry\ we are mainly
concerned with two!dimensional ~ows\ and the problem
can be reduced to axisymmetrical coordinates "r\ z#
"Fig[ 1#[

The length scale L is the half thickness e of the vertical
layer between the two cylinders[ The dimensionless slot
is then de_ned by the aspect ratio and the inner and outer
radii\ the latter depending on the curvature parameter]
ri � 0:g and ro � 1¦0:g[ With the following decompo!
sition for the velocity] V"r\ z# � U"r\ z#er¦W"r\ z#ez\ the
governing equations "5#Ð"8# can be reduced to the set of
equations below]

0
r

1

1r
"rU#¦

1

1z
W � 9 "09#

U � −
1P
1r

W � −
1P
1z

¦RaT"T¦NC# "00#

1T
1t

¦U
1T
1r

¦W
1T
1z

�
0
r

1

1r 0r
1T
1r1¦

11T

1z1
"01#

o�
1C
1t

¦U
1C
1r

¦W
1C
1z

�
0
Le $

0
r

1

1r 0r
1C
1r 1¦

11C

1z1 %[ "02#

The appropriate boundary conditions are]
U"r � ri\ z# � U"r � ro\ z# � 9\ W"r\ z � 2A# � 9\

1T
1r br�ri

�
1C
1r br�ri

� 0\
1T
1r br�ro

�
1C
1r br�ro

�
0

1g¦0

and
1T
1z bz�2A

� 9
1C
1z bz�2A

� 9[ "03#

Actually\ in order to satisfy heat and mass conservation\
the inner and outer heat and mass ~uxes are related by
q?iri � q?oro and j?iri � j?oro[

Equations "09#Ð"02#\ together with the boundary con!
ditions "03#\ then completely determine the problem in

Fig[ 1[ Schema of a two!dimensional porous layer in the axi!
symmetrical "a# and non!dimensional form "b#[

terms of the dimensionless parameters
"A\ g\ RaT\ Le\ N\ o�#[

As the problem is two!dimensional and incom!
pressible\ one can introduce the stream function C\
de_ned by]

U �
−0
r

1C
1z

and W �
0
r

1C
1r

[

Thus\ upon the introduction of the stream function\ equa!
tions "09# and "00# get replaced by]

11C
1r1

−
0
r

1C
1r

¦
11C
1z1

� r RaT 0
1T
1r

¦N
1C
1r 1

with C � 9 on 1V[ "04#

2[ Numerical solution

The complete governing equations "09#Ð"03# were
solved via spectral collocation methods\ especially
e.cient for partial derivative problems in simple ge!
ometries "Azaiez et al[ ð14Ł#[ Unlike classical methods
like _nite di}erences or _nite volume methods\ spectral
methods are global^ in particular\ the spatial derivative
value of a function at one point depends on the values of
the function at all the nodes of the grid[ This particularity
allows the use of a relatively small mesh size[ Another
advantage of these methods concerns their great pre!
cision^ actually\ the approximation error size is only lim!
ited by the regularity of the exact solution[ The accuracy
of spectral approximations comes from the rapid
"exponential# decay of approximation errors as the spec!
tral resolution is increased[ Compared to the relatively
slow "algebraic# convergence typical of _nite di}erence
or _nite element methods\ far more e.cient numerical
simulations can be achieved "Canuto et al[ ð15Ł#[

The spatial discretization of the problem by spectral
methods is a technique involving the resolution of partial
derivative equations based on the approximations of the
solution by high!degree polynomials and the use of a
polynomial tensorial basis[ These methods consist of
numerical integration by quadratic formulae]

[F $ P1N−0\ \;"ji\ ri#N] g
0

−0

F"x# dx � s
N

i�9

F"ji#ri[

"05#

The collocation points "ji# chosen for spatial dis!
cretization are the GaussÐLobattoÐLegendre points\
de_ned as solutions of the equation] "0−x1#L?n"x# � 9
where\ Ln"x# are the Legendre polynomials\ orthogonal
on L1ð−0\ 0Ł[ These points have the property that the
solution is exact for any polynomial function of degree
¾1N−0\ and the node distribution becomes squeezed
near the edges\ so this mesh pattern is specially indicated
in such problems where boundary layers occur[
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Temporal integration is made by a backward AdamsÐ
Bashforth:Euler scheme\ a second!order discretization\
that implicitly solves the di}usion term and explicitly the
convection terms]

0
1T
1t

−91T1
n¦0

�
2Tn¦0:1−1Tn¦Tn−0:1

Dt
−91Tn¦0

"06#

"V =9T#n¦0 � 1Vn = 9Tn−Vn−0 = 9Tn−0[ "07#

The complete discretization of our problem leads to the
resolution of two!classical di}erential problems[ The _rst
is the Helmholtz problem that concerns the unsteady
conservation equations "01# and "02#\ in which the
unknown variables are T and C and where the association
to Neuman|s boundary conditions "03# implies the use of
a variational formulation called weak[ The other is the
Darcy problem constituted by equations "09# and "00#\
whose unknowns are U\ W and P and which is solved by
the Uzawa algorithm "Arrow et al[ ð16Ł#[ This set of
equations reduces\ in the spectral space\ to a Poisson|s
tensional linear system that can be easily solved by the
direct method of successive diagonalization "Zang et al[
ð17Ł#[

From a set of "A\ g\ RaT\ Le\ N\ o�# parameters and an
initial _eld of values\ we can thus obtain the temporal
variation of the variables "T\ C\ U\ W\ P#[ The solution is
assumed to have reached the steady state as soon as the
residue "di}erence between two successive estimates of
any variable# satis_es the following criterion]

Res"8# � Max
V

=8k¦0−8k = ³ 09−5\

where 8 denotes any of the _ve quantities "T\ C\ U\ W\ P#\
and the subscript k indicates the time!step order[

In most engineering applications\ where the details of
the solution are of less signi_cance\ the overall solute and
heat transfer rate of the system under consideration is
summarized by resorting to the Nusselt and Sherwood
numbers[ The average Nusselt and Sherwood numbers
at the inner and outer cylinders are de_ned respectively
by]

Nui � 0
q?convect

q?conduct1ri

� 1A
ln"1g¦0#

g 0g
¦A

−A

DT dz1
−0

and Nuo �"1g¦0#Nui "08#

Shi � 0
j?convect

j?conduct1ri

� 1A
ln"1g¦0#

g 0g
¦A

−A

DC dz1
−0

and Sho �"1g¦0#Shi "19#

where DT and DC are the side!to!side temperature and
concentration di}erences[

This program\ dealing with the problem of double!
di}usive convection in a cylindrical geometry\ has been
successfully tested with results from other authors either
in natural convection "N � 9# for the same geometry ð3\

4Ł or in double!di}usive convection for a rectangular
geometry "g small enough# ð5Ð8Ł[

Examinations of the numerical results led to some
assumptions about ~ow behaviour for high aspect ratios
that will afterwards allow us to solve the problem ana!
lytically[

3[ Analytical solution for the steady!state

3[0[ Formulation

The numerical solution to the full problem indicates
that when the momentum\ heat and mass balance in
the enclosure can be represented by a slow progression
towards a steady state\ the temperature and con!
centration _elds become linearly and stably strati_ed in
the vertical direction\ for su.ciently high aspect ratios
"see Section 4#[

In these cases\ outside the end regions\ the velocity
vector proves to be predominantly vertical[ Guided by
these observations\ the proposed form of the steady!state
analytical solution reads]

V"r\ z# � W"r\ z#ez T"r\ z# � u"r#¦a"z#

C"r\ z# � f"r#¦b"z#

where W\ u\ f\ a\ b are unknown functions to be deter!
mined[

According to these assumptions\ equations "09# and
"00# imply that W is independent of the vertical coor!
dinate z and P is independent of the radial coordinate r]
W 0 W"r#\ P 0 P"z#[ Introducing these relationships
into equations "09#Ð"03# and rearranging the terms\ a
system of second!order ordinary di}erential equations is
obtained]

W−RaT"u¦Nf# � −P?¦RaT"a¦Nb# "10#

Wa? �Dru¦aý "11#

Wb? �
0
Le

"Drf¦bý# "12#

where Dr is the radial component of the Laplacian]

Dr �
0
r

1

1r 0r
1

1r1 and f ?"r# �
df
dr

[

It can be already noticed that the left hand of equation
"10# is only dependent on r and the right hand on z\ so
the variables can be separated\ which implies]

W−RaT"u¦Nf# � Cste � k

and P?−RaT"a¦Nb# � −k[

The associated boundary conditions are]

u?"ri# � f?"ri# � 0 and u?"ro# � f?"r9# �
0

1g¦0
[

"13#

By solving equations "10#Ð"12#\ which are subjected to
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boundary conditions "13#\ the unknown functions can be
determined in terms of _ve integration constants
"k\ C0\ C1\ D0\ D1#[ To do so\ _ve other conditions have to
be imposed on the solution[

3[1[ Additional conditions

3[1[0[ Conservation of mass
Mass is conserved across any transversal section]

g
ro

ri

W"r#r dr � 9[ "14#

3[1[1[ Conservation of total amount of solute
As the problem studied here includes neither chemical

reactions nor mass and thermal sources\ there is no pro!
duction or waste of any of the components[ The total
amount of solute has\ therefore\ to be conserved]

1A g
ro

ri

f"r#r dr¦1"0¦0:g# g
A

−A

b"z# dz � 9[ "15#

3[1[2[ Conservation of total enthalpy
With a similar reasoning\ the conservation of total

enthalpy leads to]

1A g
ro

ri

u"r#r dr¦1"0¦0:g# g
A

−A

a"z# dz � 9[ "16#

3[1[3[ Balance between convective and diffusive
transport

In a steady state\ the net di}usive and convective trans!
port of enthalpy and solute through any horizontal cross!
section in the cavity balance each other out exactly\ this
is expressed by]

g
ro

ri

Wur dr � a? g
ro

ri

r dr � 1a?"0¦0:g# "17#

g
ro

ri

Wfr dr � 1
b?
Le

"0¦0:g#[ "18#

Noting that the left!hand!side of equations "17# and "18#
are constants\ the right hand must also be^ we then have
a � az and b � b Le z\ a and b being two constants[

Finally\ the linear system of second!order coupled
di}erential equations]

W−RaT"u¦Nf# � k "29#

aW �Dru "20#

b Le W �
0
Le

Drf "21#

coupled to boundary conditions "13# and the integral
conditions coming from "14#Ð"18#]

g
ri

ri

W"r#r dr � 9\ g
ro

ri

u"r#r dr � 9\ g
ro

ri

f"r#r dr � 9

"22#

g
ro

ri

Wur dr � 1a 00¦
0
g1

and g
ro

ri

Wfr dr � 1b 00¦
0
g1 "23#

de_ne a simple\ well!posed mathematical problem that
can be solved rather easily[

3[2[ Resolution

First of all\ the value of constant k can be readily
determined by integrating expression "29# through a hori!
zontal cross!section\ which\ in view of the integral con!
ditions "22#\ gives k � 9[ Equation "29#\ therefore\
reduces to]

W−RaT"u¦Nf# � 9[ "24#

3[2[0[ Determination of the velocity
Substitution of "20# and "21# into the derivative of

equation "29# gives the equation for velocity]

DrW−v1W � 9 with v1 � RaT"a¦Nb Le1#[ "25#

This represents a Bessel equation[ Its solution\ assuming
that v is positive\ is]

W"r# � C0Io"vr#¦C1Ko"vr# "26#

where In and Kn are the modi_ed Bessel functions of nth
order ð18Ł[

"The case of a negative v value brings no solution for
the problem under consideration[# In terms of the yet
unknown constant v\ C0 and C1 can readily be deter!
mined by deriving the velocity expression "26# and intro!
ducing the boundary conditions "13#[

Hence the expressions for the constants are]

C0 �
RaT"0¦N#

vG 0K0"vro#−
0

1g¦0
K0"vri#1

C1 �
RaT"0¦N#

vG 0I0"vro#−
0

1g¦0
I0"vri#1

where G � I0"vri#K0"vro#−I0"vro#K0"vri#[
Note that these values of C0 and C1 also implicitly

satisfy conservation of mass\ i[e[

W
 "ro# � W
 "ri# with the notation W
 "r# � ÐW"r#r dr[

3[2[1[ Determination of temperature and concentration
Eliminating velocity from equations "20# and "21# gives

a relation between u and f which gives\ after two suc!
cessive integrations\

af−b Le1u � D0 ln r¦D1[ "27#
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The two constants D0 and D1 are obtained implying the
use of boundary conditions "13# and integral conditions
"22#\ respectively\ in the resolution[

D0 �
a−b Le1

g
D1 �

−D0

3 0
r1
o ln ro−r1

i ln ri

0¦0:g
−11[

Finally\ the use of the _rst relation between u and f

coming from Darcy|s equation "25# implies]

u"r# �
0

v1
"aW"r#−N RaT"D0 ln r¦D1## "28#

and

f"r# �
0

v1
"b Le1 W"r#¦RaT"D0 ln r¦D1##[ "39#

3[2[2[ Completion of the solution
The last task is to determine the values of constants a

and b\ using the additional transport conditions[ Intro!
ducing the last results concerning u and f into equations
"23# and taking into account relations "24# and "27# the
system reduces to]

g
ro

ri

W1"r#r dr � 1Ra 00¦
0
g1"a¦Nb#

and D0 g
ro

ri

W"r#r ln r dr � 1ab 00¦
0
g1"0−Le1#[ "30#

Using the integral properties of Bessel|s functions ð18Ł\
that lead to the non!linear and coupled system of
algebraic equations\ we obtain]

r1
o

1
W1"ro#−

r1
i

1
W1"ri# � 1RaT 00¦

0
g1"a¦Nb# "31#

D0

v1 0RaT"0¦N#
ln"1g¦0#

g
−W"ro#¦W"ri#1
� 1ab 00¦

0
g1"0−Le1#[ "32#

This system can readily be solved to obtain a and b as
functions of "g\ RaT\ Le\ N#[

Obviously\ for the general case\ the equation system
de_ned by "31# and "32# has to be solved by numerical
methods\ e[g[ by NewtonÐRaphson|s method[ Moreover\
this is by far a much easier and faster task than numeri!
cally solving the full set of non!linear and coupled partial
di}erential equations "09#Ð"02#[

In this way\ equations "26#\ "28# and "39# then give the
velocity\ temperature and concentration pro_les[

Once the solution has been fully determined\ it is poss!
ible to compute the average Nusselt and Sherwood num!
bers on the inner wall\ which are usually of interest in
engineering applications\ as mentioned in Section 2]

Nui �
ln"1g¦0#

g
"u"ro#−u"ri##−0

Shi �
ln"1g¦0#

g
"f"ro#−f"ri##−0[ "33#

Note that because the wall!to!wall concentration and
temperature di}erences at any arbitrary horizontal cross!
section are independent of the vertical position of the
cross!section\ in the domain of validity of the analytical
solution\ the analytical expressions for Sh and Nu do not
depend on the height of the enclosure\ but still depend
entirely on the curvature of the cylinders[

3[2[3[ Limit cases
When v becomes high\ an asymptotic analysis of the

modi_ed Bessel functions ð18Ł enables the reduction of
the analytical solution presented in the foregoing section
to]

W"r# ¼
RaT"0¦N#

vgzr 0
ev"r−ro#

zro

−
ev"ri−r#

zri
1[

In this case\ the velocities at the inner and outer cylinders
and the side!to!side temperature and concentration
di}erences are expressed by very simple expressions
depending on v and D0 which are the solutions of a
polynomial system coming from equations "30#\ much
easier to solve than the previous one[

We can then readily deduce the Nusselt and Sherwood
numbers\ which are based on the temperature and con!
centration di}erences between the vertical boundaries
described in "33#[

Moreover\ it is possible to simplify the analytical solu!
tion further by additional assumptions about input par!
ameters "g\ RaT\ Le\ N#[ Consider\ for example\ the case
of a heat!driven boundary layer[ It is then assumed that
~uid ~ow is mainly due to the gradients of temperature\
i[e[ =N= ð 0[ Under these circumstances\ the approximate
solution to equations "31# and "32# becomes
v � Ra1:4

T 1−0:4"1g¦0#−0:4\ yielding the following
approximate values for the Nusselt number]

Nui � ln"1g¦0# Ra1:4
T "1g¦0#3:41−5:4g−0"g¦0#−0[

The thickness of the hydrodynamic\ concentration and
temperature boundary layers along the inner and outer
cylinders can then be estimated by]
"dr#i �"dr#o:"1g¦0# ¼ 0:v[

It should be noted that this behaviour is exactly what
was predicted by some other studies in natural convection
with this geometry ð12Ł[

4[ Results and discussion

4[0[ Numerical results

A large number of numerical computations of the full
mathematical problem have been carried out with the
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main objective of investigating the steady!state behaviour
of the problem considered here[ The best way to estimate
the heat and mass transfer engineering contribution is to
evaluate the expressions for overall Nusselt and Sher!
wood numbers[ That is why we systematically investi!
gated the e}ect of each dimensionless parameter on these
numbers\ for di}erent values of the curvature[

4[0[0[ In~uence of the aspect ratio
The _rst step consists of bringing out the in~uence of

the aspect ratio on the mixture behaviour[
It is already known that when the cavity is tall enough\

provided that the end e}ects are con_ned to small regions
adjacent to the top and bottom of the cell\ the ~ow
presents a parallel boundary!layer structure[

In order to show this trend more precisely\ the in~uence
of the aspect ratio on the average Nusselt and Sherwood
numbers at the inner wall is illustrated in Figs 2"a# and
"b#[ Therefore\ these _gures represent Nui"a# and Shi"b#
de_ned in formulae "08# and "19# for A varying from 0Ð
09 and for di}erent values of g\ the other parameters
being _xed at RaT � 099\ Le � 09 and N � 0[

They clearly exhibit that the Nusselt and Sherwood
numbers lead asymptotically to a constant value\ what!
ever the curvature[ These constant values\ plotted in grey
in the _gures\ come from the analytical study developed
in Section 3 and will be discussed later\ in Section 4[1[

These _gures also represent the temperature "a# and
concentration "b# _elds for limiting cases "A � 0\ 09 and
g � 9\ 09#[ They illustrate the strati_cation of the ~ow as
A increases[ We can observe that unlike in the Cartesian
case "g � 9#\ the cylindrical case does not present a cen!

Fig[ 2[ In~uence of the aspect ratio A on the Nui "a# and Shi "b# for di}erent values of g[ Isotherms "a# and isohalines "b# at steady!
state for RaT � 099\ Le � 09\ N � 0\ A � 0 and 09\ g � 9 and 09[

tro!symmetrical distribution of the _elds[ This is due to
the non!symmetrical form of the equations in the radial
direction\ as well as the boundary conditions[

In order to present a large amount of data within
reasonable space and at the same time satisfy the pre!
occupations of engineering applications\ in the following
parts we focus on the study of the in~uence of the physi!
calÐchemical input parameters "RaT\ Le\ N# on the overall
Nusselt and Sherwood numbers[

4[0[1[ In~uence of the Raylei`h number
While it is well known that the Rayleigh number

characterizes the in~uence of the external forces on the
convective motion\ it can be seen in Fig[ 3 that the Nui

"a# and Shi "b# numbers\ i[e[ heat and solute transfer rate
on the vertical inner wall\ increase with the Rayleigh
number[ Thus\ the mixture is carried by the general con!
vective movement whose strength increases with the Ray!
leigh number\ velocity being more important near the
inner cylinder than the outer cylinder[ On the other hand\
when the Rayleigh number is equal to zero\ there is no
convection and the mixture is submitted to the so!called
pure di}usive regime[ Here\ there is an exact solution of
the system "09#Ð"04# for the temperature and the con!
centration which is linear for the rectangular case\ and
logarithmic for the cylindrical case\ as can be seen in the
_elds plotted in Figs 3"a# and "b#[

4[0[2[ In~uence of the Lewis number
The in~uence of the Lewis number on Nui and Shi

numbers is represented in Fig[ 4"a# and "b#[ The Lewis
number is the ratio of thermal to solutal di}usivities\
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Fig[ 3[ In~uence of the Rayleigh number RaT on the Nui "a# and Shi "b# for di}erent values of g[ Isotherms "a# and isohalines "b# at
steady!state for A � 09\ Le � 09\ N � 0\ RaT � 9 and 199\ g � 9 and 09[

Fig[ 4[ In~uence of the Lewis number Le on the Nui "a# and Shi "b# for di}erent values of g[ Isotherms "a# and isohalines "b# at steady!
state for A � 09\ RaT � 099\ N � 0\ Le � 0 and 19\ g � 9 and 09[

so it characterizes solute transport relative to thermal
di}usion[ When the Lewis number is equal to unity\ sol!
ute and heat di}use in equal proportions\ leading to
exactly identical temperature and concentration _elds in
the steady state\ as plotted in Fig[ 4[ Note that in this
case\ which generally concerns gases\ the duration of the

transient state is shorter for the concentrations than for
the temperature\ due to normalized porosity o� ³ 0[

Regarding liquids\ heat di}usion is always much
stronger than mass di}usion\ leading to Lewis numbers
much greater than 0[ It can be seen in Fig[ 4 that when
the Lewis number increases\ Nui becomes constant and
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Shi increases[ For RaT � 099 and Le � 19\ as in the limit
case plotted in Fig[ 4\ the temperature distribution is
fully strati_ed\ while concentration distribution is hardly
strati_ed at all[ For higher Lewis numbers\ the core of
concentration _eld is in a state of almost uniform con!
centration[

4[0[3[ In~uence of the buoyancy ratio
The non!dimensional parameter N characterizes the

ratio between solutal and thermal buoyancy forces[ Its
in~uence on the Nui and Shi numbers is represented in
Figs 5"a# and "b# respectively\ for A � 09\ RaT � 099 and
Le � 09[

It shows that beneath unity\ the Nusselt and Sherwood
numbers are almost constant\ independently of the cur!
vature[ This means that for these values\ the solutal con!
tribution is less than the thermal one\ and becomes neg!
ligible as N becomes smaller\ leading to a heat!driven
regime[ Similarly\ as N increases\ the solutal contribution
is no longer negligible\ and co!operates with the thermal
contribution to increase the convective amplitude and
converge to a steady!state di}erent from the previous
one\ as shown in the _elds plotted in Figs 5"a# and "b#[
This could lead\ as N becomes high\ to a situation where
the solutal force prevails] the regime becomes solute!
driven[

N can also be negative\ depending on the value of the
concentration expansion coe.cient bc[ In this case of
opposing buoyancy forces\ oscillating regimes may
appear[ This behaviour has been investigated by Ala!
vyoon et al[ ð09Ł for rectangular cavities[ This also holds

Fig[ 5[ In~uence of the buoyancy ratio N on the Nui "a# and Shi "b# for di}erent values of g[ Isotherms "a# and isohalines "b# at steady!
state for A � 09\ RaT � 099\ Le � 09\ N � 9[90 and 09\ g � 9 and 09[

in cylindrical con_gurations[ These regimes\ being
unsteady\ prevent the formation of parallel structure[

4[0[4[ In~uence of the curvature
The present results\ obtained for a wide range of RaT\

Le\ N and g\ also show the e}ect of curvature on con!
vective heat and mass transfer[ It should be noticed that
the results concerning the case of g � 9 came from the
numerical resolution for the problem in a rectangular
cavity and are in good agreement with the limiting case
of the annular problem[ Flow pattern\ temperature and
concentration _elds for some typical values
"RaT � 099\Le � 09\N � 0 and g � 9\ 09# are reported
in Fig[ 6 in order to emphasize the in~uence of the cur!
vature illustrated in the previous _gures[ It stresses that
as g increases\ isotherms and isohalines shift towards the
inner wall\ resulting in asymmetry of the temperature
and concentration _elds in the annulus[ Furthermore\ the
temperature and concentration gradients near the inner
wall increase rapidly as the in~uence of the curvature
increases and the behaviour is just the reverse of that
near the outer wall[

This in~uence of curvature is therefore felt by the Nus!
selt and Sherwood numbers and is also summed up in
Fig[ 6[ So\ the presence of a cylindrical geometry implies
a decrease of the average Nusselt and Sherwood numbers
at the inner cylinder and their increase at the outer cylin!
der[ It should be noticed that because of the de_nition of
the Nusselt and Sherwood numbers ð"08# and "19#Ł\ their
expression also depends on the curvature being weighted
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Fig[ 6[ In~uence of the curvature parameter g on the average Nusselt and Sherwood numbers on the inner and outer cylinders[ Pattern
of velocity vectors\ isotherms and isohalines at steady!state for A � 09\ RaT � 099\ Le � 09\ N � 0\ g � 9 and 09[

by ln"1g¦0#:g for the inner values and by
"1g¦0# ln"1g¦0#:g for the outer value[

4[1[ Analytical results

With a view to illustrate the crucial features and the
domain of the validity of the steady!state analytical solu!
tion\ as well as the curvature e}ects on the mixture|s ~ow\
analytical results were also represented by a grey line on
the numerical results "Figs 3Ð6#\ for they cover a wide
range of parameters[

The assumption used in the implementation of the
analytical solution is that the ~ow presents a parallel
boundary!layer structure[ The validity of this assumption
improves steadily as the cavity becomes taller\ provided
that the end e}ects are con_ned to small regions adjacent
to the top and bottom of the cell[ For a given set of
"g\ RaT\ Le\ N# the analytical Nusselt and Sherwood num!
bers have a constant value\ independently of the aspect
ratio A[ The parallel!~ow model will then be valid as
soon as the analytical solution is close enough to the
numerical one[

Thus\ as in Fig[ 2\ when A − 4\ the ~ow can be con!
sidered as parallel\ and the analytical solution sat!
isfactorily agrees with the numerical results[

The numerical study of the in~uence of the physicalÐ
chemical properties\ controlled by the non!dimensional
parameters "RaT\ Le\ N#\ and the curvature\ controlled
by g\ presented in Figs 3Ð6\ was carried out for an aspect
ratio of 09[ In the domain covered by these results\ i[e[
0 ¾ RaT ¾ 199\ 0¾ Le ¾ 19\ 9[90¾ N ³ 09 and
9 ¾ g ¾ 09\ the results obtained by numerical and ana!

lytical resolution are very close[ This shows that the ana!
lytical solution is quite e.cient to describe the behaviour
of the mixture in a cylinder submitted to heat and mass
~uxes for aspect ratios greater than 4[ For higher Ray!
leigh or Lewis numbers\ convection becomes so strong
and mass di}usion so weak that the strati_cation assump!
tion is no longer valid for the temperature and con!
centration distributions[

Finally\ Fig[ 7 represents numerical "dotted line# and
analytical pro_les "grey line# of velocity\ temperature and
concentration at mid!height "z � 9# for A � 09\
RaT � 099\ Le � 09 and N � 0[ It allows a more accurate
comparison between numerical and analytical solutions
in the steady state[ The agreement between the two is
also shown to be good too[ It should be noted that\
as already observed with the numerical simulation\ an
increase in the curvature parameter g introduces a
decrease in temperature and concentration which is much
faster near the outer wall and much slower near the inner
wall[

5[ Conclusion

In this paper the phenomenon of natural double!
di}usive convection was studied through a vertical satu!
rated porous annulus subjected to uniform ~uxes of heat
and mass[ The formulation of the problem was developed
on the basis of a two!dimensional mathematical model
associated to Darcy|s law with Boussinesq approxi!
mation[

In order to obtain detailed results for temperature and
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Fig[ 7[ Comparison between fully numerical "dotted lines# and analytical "grey lines# solutions at steady!state for A � 09\ RaT � 099\
Le � 09 and N � 0 for di}erent values of g[ Velocity "a#\ temperature "b# and concentration "c# pro_les at mid!height "z � 9#[

solute distributions for the convective ~ow\ a numerical
solution was developed\ and an extensive set of numerical
simulations carried out to cover the parametric domain
in which double!di}usive convection can exist[ The e}ects
of the major system parameters on the double!di}usion
were investigated[ The brief summary of the results is]

*Curvature e}ects on temperature\ concentration and
velocity _elds are signi_cant and strongly disturb the
centro!symmetrical nature of the ~ow obtained in a
rectangular cavity[

*The numerical integration of the full problem reveals
that for su.ciently large aspect ratios\ the ~ow is
almost parallel except in regions close to the horizontal
boundaries\ and the concentration and temperature
_elds in the core region are rather linearly strati_ed[

*The assumption of parallel ~ow allows analytical res!
olution of the steady!state problem and leads to rela!
tively simple solutions\ less time!consuming than the
numerical ones[ These solutions can be even simpler
for limit cases like RaT Ł 0 and solute!driven or heat!
driven boundary layer approximations[

*A good agreement is found between analytical and
numerical results for A � 09\ 0¾ RaT ¾ 199\
0 ¾ Le ¾ 19\ 9[90 ¾ N ¾ 09 and 9 ¾ g ¾ 09[

Finally\ it should be noted that the analytical solution
developed in this study is quite accurate in predicting the
~ow structure and heat and mass transfer for a wide range
of parameters and for su.ciently high aspect ratios[ It
is therefore a powerful tool of analysis[
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